home *** CD-ROM | disk | FTP | other *** search
Text File | 1994-06-05 | 3.1 KB | 127 lines | [MATS/MATL] |
- echo off;
- % NUMERICAL METHODS: MATLAB Programs, (c) John H. Mathews 1994
- % To accompany the text:
- % NUMERICAL METHODS for Mathematics, Science and Engineering, 2nd Ed, 1992
- % Prentice Hall, Englewood Cliffs, New Jersey, 07632, U.S.A.
- % This free software is complements of the author.
-
- % Algorithm 4.1 (Evaluation of a Taylor Series).
- % Section 4.1, Taylor Series and Calculation of Functions, Page 203
- echo on; clc; format long; hold off; clear
-
- % This program investigatges Taylor approximations.
-
- % Pn(x) = c(1) + c(2)x + c(2)x^2 + ... + c(n+1)x^n
-
- % where the degree n of approximation is large (n ~ 25).
-
- % Coefficient lists for several functions have been
-
- % stored in M-files named; zcos zsin ztan zexp
-
- % zacos zasin zatan zcosh zsinh zsqrt zlog
-
- % zsqrt4 zinv zemx2d2 zcosde zsinde zlogq
-
- pause % Press any key continue.
-
- clc;
- % Approximations for tan(x)
-
- % Issue the command ztan to load the coefficients
-
- % into the array C. The function name is loaded
-
- % into the variable fun, the degree is loaded into m.
-
- % The endpoints of [a,b] are loaded into a and b.
-
- % Load the Taylor coefficients.
-
- [fun,dfun,ifun,x0,m,C,Ax] = ztan;
-
- pause % Press any key continue.
- clc;
- a = Ax(1,1); % You can change the left endpoint a.
- b = Ax(1,2); % You can change the right endpoint b.
- c = Ax(1,3);
- d = Ax(1,4);
- n = m; % You can change the degree n.
- C = flipud(C);
- C = C(1:n+1);
- C = flipud(C);
-
- pause % Press any key continue.
-
- clc; clg;
- h = (b-a)/200;
- X = a:h:b;
- x = X;
- Y = eval(fun);
- axis([a b c d]);...
- P = polyval(C,X);...
- plot(X,Y,'-g',X,P,'-r');...
- hold on;...
- plot([a b],[0 0],'b',[0 0],[c d],'b');...
- xlabel('x');...
- ylabel('y');...
- Mx1 = ['Comparison of ',fun,' and P'];...
- Mx2 = [Mx1,num2str(n),'(x)'];...
- title(Mx2);...
- grid;...
- axis;...
- hold off;...
- shg; pause % Press any key to continue.
-
- Mx1 = 'The function is f(x) = ';
- Mx2 = 'The interval is ';
- Mx3 = 'Pn(x) = c(1)x^n + c(2)x^(n-1) + ... + c(n)x + c(n+1)';
- Mx4 = 'The degree is n = ';
- Mx5 = ', and the coefficients list C is:';
- clc,format short e,echo off,diary output,...
- disp(''),disp([Mx1,fun]),...
- disp([Mx2,'[',num2str(a),' , ',num2str(b),']']),...
- disp(Mx3),disp([Mx4,num2str(n),Mx5]),...
- for i=1:5:n+1, disp(C([i:min(i+4,n+1)])'); end,...
- diary off, echo on
-
- pause % Press any key to graph f(x) - Pn(x).
-
- clc; clg;
- a = -1; % You can change the left endpoint a.
- b = 1; % You can change the right endpoint b.
- h = (b-a)/200;
- X = a:h:b;
- x = X;
- Y = eval(fun);
- P = polyval(C,X);
- c = min(Y-P);
- d = max(Y-P);
- axis([a b c d]);...
- plot(X,Y-P,'-r');...
- hold on;...
- plot([a b],[0 0],'b',[0 0],[c d],'b');...
- xlabel('x');...
- ylabel('y');...
- Mx1 = ['The error; ',fun,' - P'];...
- Mx2 = [Mx1,num2str(n),'(x)'];...
- title(Mx2);...
- grid;...
- axis;...
- hold off;...
- shg; pause % Press any key for a list of numerical computations.
-
- clc; format long;
- a = -1.2;
- b = 1.2;
- X = a:0.1:b;
- x = X;
- Y = eval(fun);
- P = polyval(C,X);
- points = [X;Y;P;Y-P];
- Mx1=['Taylor polynomial approximation of f(x) = ',fun];
- Mx2=' x(k) f(x(k)) Pn(x(k)) error';
- clc,echo off,diary output,...
- disp(''),disp(Mx1),disp(''),disp(Mx2),disp(points'),...
- diary off,echo on
-